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We are interested in estimating the probability of an aerosonde hitting a manned aircraft in
flight, or an innocent bystander on the ground. We will work through analyses and example
calculations for each case.

Symbols

bs span of sounding aircraft
bt span of transiting aircraft
dA overlap area
fc average crash frequency
fx average collision frequency
h altitude
ht target height
lc segment length
lt target length
Pc crash probability
Px strike probability
Rc crash radius
Tb sounding period
Vs speed of sounding aircraft
Vt speed of transiting aircraft
yt target cross-track position

γ glide angle
ρs sonde density per unit volume
σs sonde density per unit area
ρt target density per unit volume
σt target density per unit area
σy tracking standard deviation
Φs frontal area of sounding aircraft
Φt frontal area of transiting aircraft
ψ crossing angle

1 Midair collision

To begin simply, consider a plane in which aerosondes are operating at random. You want to know
the probability of collision if you fly across the plane. The calculation involves
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Figure 1: Conflict in 2D with motionless traffic. The aircraft in transit sweeps through the boxed
area in time dt. A collision occurs if this area includes one or more targets.

Vt your speed
bt your wingspan
Vs the aerosondes’ speed
bs the aerosondes’ wingspan
σs the average density of aerosondes over the plane

To simplify further, temporarily restrict attention to the most elementary case in which Vs and bs
are zero. Then figure 1 shows how to compute the collision risk directly. In time dt you sweep
through area

dA = btVtdt (1)

The probability of collision during the interval is

Px(dt) = 1− e−σsbtVtdt

≈ σsbtVtdt, σsbtVtdt << 1 (2)

Hence the probability of collision per unit time is

fx =
dPx

dt
= σsbtVt (3)

As illustrative numbers, take

Vt 860 km/h (typical airliner cruise speed)
bt 0.06 km (747)
σs 8× 10−6/km2 (US radiosonde station density)

fx then works out to 4×10−4/flight-hour, or once every 2500 hours on average. Roughly speaking,
this is the collision rate that we would have if there were a tethered balloon flying permanently
over each radiosonde site (and if no avoiding action were taken!). Fortunately, balloons are not
tethered. This reduces the collision probability substantially, as we will demonstrate presently.

First, however, we consider the case in which aerosondes have nonzero speed. This turns out
not to make much difference if Vs is small compared with Vt. The effect, as illustrated in figure 2,
is to change the overlap area dA as a function of the angle between the two velocity vectors. In
particular

dA(ψ) ≈ bt

√
V 2

t + V 2
s + 2VtVs cosψ dt (4)
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Figure 2: Conflict in 2D with moving traffic. The combined velocity vectors vary the area over-
lapped in time dt as a function of angle ψ.

(We neglect the complicating factor of cosφ from figure 2, so this expression is slightly conservative.)
The traffic moves in random directions, so all values of ψ are equally likely. Hence averaging over
all possible directions gives

d̄A ≈ 1
2π

∫ 2π

0

dA(ψ) dψ

≈ btVtdt


 1

2π

∫ 2π

0

√
1 +

(
Vs

Vt

)2

+ 2
Vs

Vt
cosψ dψ


 (5)

If Vs/Vt increases from zero to 0.5, for example, the bracketed coefficient increases from 1 to about
1.3. For order-of-magnitude estimation this change is negligible, so we are justified in using the
simpler formula in (3).

The effect of finite aerosonde wingspan is also not significant if it is small compared with bt.
But in any case it is easy to include, since one need only replace bt in (3) with (bt + bs).

1.1 3D collision probability

The real 3D problem differs only slightly from the 2D idealisation. Aircraft fly at shallow angles,
so the principal component of converging velocity will remain horizontal. The correction required
for 3D is only to replace areal density by volumetric density, and target width by frontal area.
Thus (3) becomes

fx = ρs(Φt + Φs)Vt (6)

Returning to the radiosonde example, suppose that each station releases balloons at intervals Tb,
and that they rise through the altitudes of interest at vertical speed ḣ. Then their density per unit
length of vertical column, on average, is 1/(Tbḣ). Hence

ρs =
σs

Tbḣ
(7)

Approximate numbers are

Tb 12 hours
ḣ 20 km/h
Φt 2× 10−4km2 (747, conservatively)
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Table 1: Density limits on randomly-distributed aerosondes
airliners general aviation

Φt [km2] 2× 10−4 10−5

Vt [km/h] 860 200
fx [per flight-hr] 10−9 10−7

ρs [per km3] 10−8 10−4

Then fx is 6 × 10−9/flight-hour. Again this presumes a random distribution of sondes, and no
possibility of avoiding action.

Notice, incidentally, that while we have been doing this calculation from the standpoint of the
transiting aircraft, the thinking would have been exactly the same had we taken a sonde’s point
of view. We would simply make the densities appearing in (3) and (6) those of transiting aircraft
rather than sondes. Hence the collision risk per sonde flight-hour would be the same as the collision
risk per transiting-aircraft flight-hour only if both types were distributed with the same average
density.

We can solve (6) for the density which will lead to a specified collision frequency; it is

ρs =
fx

(Φt + Φs)Vt
(8)

Results for two cases are listed in table 1. The first uses 747 parameters and sets fx at 10−9/flight-
hour, this being the maximum rate of catastrophic failure considered acceptable by the US FAA.
The second uses general-aviation aircraft parameters and sets fx at 10−7/flight-hour, which is
closer to the historical rate achieved by the “see-and-avoid” paradigm. The allowable sonde density
calculated in the second case is much higher than any we would expect in practice, so the probability
of collision would be negligible by current standards even if nothing were done about avioidance.
In the more conservative case, however, the calculated density is marginally lower than would be
desired for routine soundings. Hence it would be necessary to arrange for the sonde distribution
to be rarefied in areas with transiting aircraft (e.g. oceanic tracks). This can easily be arranged,
since airways and other busy airspace are well defined over the regions of interest. Aerosondes can
be programmed to avoid them laterally or vertically. Note that this entails no requirement for the
avoidance strategy to be perfectly reliable. Even if it worked only 90% of the time, it would reduce
the aerosonde density tenfold in the areas of concern.

2 Crash hazard

Aircraft crash from time to time and consequently constitute a hazard to innocent bystanders on
the surface. Suppose that the average frequency of crashes is fc. Then the probability of a crash
in any interval dt is

Pc(dt) = 1− e−fcdt

≈ fcdt, fcdt << 1 (9)

Thus the probability of crashing in the interval required to cross a target of length lt would be

Pc(lt) = fc
lt
Vs

(10)

Meanwhile the probability of such a target actually being in the flight path during this interval is
the product of
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(bs + bt) combined width of aircraft and target;
Vsdt length along the track; and
σt average density of targets on the surface.

c.f. (3) and figure 1. Thus the overall probability of a strike, per unit of flight time, is

fx =
(
fc
lt
Vs

)
(bs + bt)Vsσt

= fclt(bs + bt)σt (11)

For illustration, consider the hazard to ships arising from aerosondes doing reconnaissance over
the high seas. Rough numbers are

σt 4× 10−4/km2 (105 ships, randomly distributed over the oceans)
lt 0.1 km, averaged over all ship sizes and orientations
bt = lt, all orientations being equally likely
bs << bt
fc 10−3/flight-hour (mostly due to severe weather)

Then fx is about 4 × 10−9/flight-hour. Meteorological requirements ultimately may entail about
106 annual aerosonde hours in oceanic reconnaissance; at this rate ships would be hit on average
once every 250 years. Actually as a hazard estimate this is pessimistic: the probability of seriously
damaging a ship, as opposed to simply hitting it, would be a good deal smaller. But 10−9 is already
small enough to be negligible.

Note that the hazard probability in this case is very much less than the aircraft crash rate
– a situation obviously different from that in manned aircraft! The hazard probability becomes
comparable with the crash rate only if the target density is high. Thus, as the ship example
illustrates, reliability requirements can be substantially relaxed if operations are planned to avoid
high-density areas.

As a further example, consider a flight-plan leg designed to keep an aircraft over reasonably
sparse terrain. There will be some error in tracking the leg, and the aircraft may overfly a few
bystanders. We can calculate the associated hazard as follows. Take the tracking error to be
Gaussian with standard deviation σy. The probability of crossing a bystander of width bt at a
distance yt from the track centreline is

p(yt) =
1

σy

√
2π

∫ yt+(bt+bs)/2

yt−(bt+bs)/2

e−1/2(y/σy)2 dy (12)

≈ bt + bs

σy

√
2π

e−1/2(yt/σy)2 , bt + bs << σy (13)

Following (11), the probability of a strike is then

Px ≈ fc
lt
Vs

bt + bs

σy

√
2π

e−1/2(yt/σy)2 (14)

To complete the example with some variety, suppose that bystanders are high rather than long,
and so much more likely to be hit from the side than from above. Then

lt ≈ ht

γ
(15)

γ being the flight-path angle. Now take
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ytRc

lc

Figure 3: Following failure causing loss of guidance, a crash could occur anywhere within gliding
range of the track. A bystander offset by yt from the original track is at risk if such failures occur
on a segment of length lc.

Vs 80 km/h (typical aerosonde)
σy 0.05 km (consistent with flight test experience)
γ 1/20 (at best L/D, hence conservative for most failures)
bt 0.03 km (typical house)
ht 0.006 km (typical house)
fc 10−3/flight-hour
yt 3σy

With these numbers the probability of a strike turns out to be about 4 × 10−9. On average, one
of every 200 million such bystanders passed at this range would be hit.

This result might be questioned on the basis that some failures (e.g. flight computer) would
cause loss of tracking performance. In that case a deadman’s switch would kill the engine, but
the aircraft could crash (with equal probability) anywhere within gliding range. Hence the crash
radius is

Rc =
h

γ
(16)

Figure 3 shows the situation from the point of view of the innocent bystander. He is at risk if the
failure occurs anywhere on a segment of length

lc = 2
√
R2

c − y2
t

= 2Rc

√
1− (yt/Rc)

2 (17)

The probability of a failure on this segment is given by (10). If the failure occurs, then the
bystander’s probability of being struck is just his fraction of the affected area, i.e.

σt =
(lt + bs)(bt + bs)
πR2

c + 2Rclc
(18)

Hence the overall probability of striking the bystander is

Px(yt) = 2fc
(lt + bs)(bt + bs)

VsRc

√
1− (yt/Rc)

2

π + 4
√

1− (yt/Rc)
2

(19)
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Now suppose that bystanders are randomly distributed across the track, with average areal density
σt. The average strike probability for all bystanders is

P̄x = 2fc
(lt + bs)(bt + bs)

VsRc

(
1
2

∫ 1

−1

√
1− ȳ2

π + 4
√

1− ȳ2
dȳ

)

= 0.24fc
(bt + bs)
VsRc

(20)

The average number of bystanders at risk per unit time is

dN

dt
= 2VsRcσt (21)

Hence the average rate of bystander strikes is

fx = 0.48fc(lt + bs)(bs + bt)σt (22)

This is essentially the same result as we had earlier (11). Note that altitude doesn’t appear, except
indirectly in the sense that the higher the altitude, the wider the corridor (16) over which the
bystander density must be calculated.

Suppose that we want to keep the average strike rate below 10−7/flight-hour, which seems
a reasonable guess at the present rate for manned aircraft. What restriction must be imposed
on the areas overflown? We use the same numbers as in our last example, except with a failure
rate of 10−4/flight-hour, rather than 10−3, because we are accounting only for events that cause
uncontrolled departure from track. (The factor of ten is a minimum requirement dictated by
economics. In estimating the costs of meteorological reconnaissance by aerosonde, we presume
that most attrition will be caused by adverse weather. If systems failures were to cause attrition
at a comparable level, then the economics could be improved by making the design more reliable.
Hence for minimum cost the systems-failure rate must be made small compared to the overall loss
rate, i.e. no worse than 10−4/flight-hour.)

At this rate the maximum allowable σt turns out to be about 1 house/km2. Obviously this
means that overland operations must be conducted in rural or remote surroundings – but then
economical access to such areas is the whole purpose of the aerosonde project.


