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Abstract 

Human-like walking is a natural dynamic mode of a pair of coupled pendula. The 
mode is most easily excited by descending a shallow slope, but energy can be added 
and removed in several other ways to  allow walking over a range of up- and downhill 
grades. Leg geometry and mass properties can be adjusted within generous limits, a 
torso can be added, and a degree of jostling tolerated without upsetting the natural 
limit cycle. The cycle can also be modulated to vary footfalls from one step to  the next, 
while maintaining a fluid and efficient u~alking rhythm. 
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1 Passive stability in walking 
Whenever possible, each of us tries to avoid falling asleep while standing up. We know 
that standing is statically unstable, so we must stay awake to maintain balance. It 
would seem, therefore, that since active stabilisation is required just to keep a biped 
standing still, it should also be necessary to sustain walking. But surprisingly enough 
this is not always true. For some bipeds, walking is a naturally stable limit cycle; thus 
such systems are statically unstable but dynamically stable. We will discuss the physics 
involved, and how it can be exploited to achieve dextrous and efficient walking. 

As we shall explain, passively stable gaits compare reasonably well with those of 
humans, so the analysis offers some useful insight for kinesiology. However, our own 
ernphasis is on design of bipedal machines. We know of at  least a dozen research ef- 
forts in this area; reports include those of [Lee 881, [Mita 841, [Miura 841, [Raibert 861, 
[Takanishi 851, [Yamada 851, and [Zheng 881. These cover a remarkable variety of ap- 
proaches, but in each case the research focus, and the principle impediment to early 
practical use, is active generation and stabilisation of the gait. In our view the alterna- 
tive path of passive stability facilitates understanding and simplifies design. 

Our approach is very much influenced by a background in aircraft design, which 
offers a useful historical analogy. The development of fixed-wing aircraft began with 
work on gliders. First steady-state gliding was understood (beginning with Sir George 
Cayley in the early 1800's [Gibbs-Smith 701). Inherent stability was also considered: 
gliders were and are designed so that disturbances excite only a brief transient, after 
which steady flight is naturally reestablished. Once efficient and stable designs were 
found, controls for changing speed and direction were developed (by Otto Lilienthal, 
the Wright Brothers, and others). Finally, a powerplant was added to  sustain level 
flight and climbs, which by that time involved only a small modification to the original 
glider design. 

The appeal of this approach is that it allowed progress in an orderly fashion, with 
each step involving a system no more complicated than necessary to address the next 
problem at  hand. We have applied the same approach to walking. Thus we bega$with a 
"biped glider" (2.e. powered by walking downhill). The theory and experimental results 
were reported in [McGeer 881. Here we present a "powered" model, which allows for 
walking on shallow rolling slopes, and for varying step length from stride to stride. Still 
it remains incomplete: we restrict attention to walking in 2D, and we exclude steep up- 
and downhill grades, such as stairways. However we expect that these can eventually 
be accommodated. 

There are several options for adding power and control to the passive walking model. 
We will consider the following four: torque application between legs (i.e. at  the hip 
joint), torque on the stance leg only, leg length modulation, and impulse application 
on the trailing leg as it leaves the ground. We will first consider a pair of legs without 
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a body, and later study the effect of a torso. Our criteria for evaluation are inherent 
stability over a range of slopes and stride lengths, weight-specific resistance (the most 
fundamental measure of efficiency), and ease of mechanical design. In our view the best 
performance is realised by a combination of stance leg torquing for going downhill and 
toe-off pulsing for going uphill; we are now designing a machine to test these methods. 

Discussion here begins with a brief review of gravity-powered walking, including 
results from our experiments, and review of a model which explains the dynamics of 
walking with a minimum of analysis. We will then develop more comprehensive math- 
ematics and apply it to a variety of examples. 

2 Review of gravity-powered walking 

The most elegant example of a gravity-powered biped is the toy sketched in figure 1. It 
is wonderfully simple and fully passive. However, its motion is somewhat complicated 
by coupling of the longitudinal cycle with side-to-side rocking, which it uses to clear 
the swing foot on each step. As a dynamical simplification we built a two-dimensional 
version as shown in figure 2. It is comparable to a person on crutches, having paired 
outer legs alternating with a broad-footed centre leg. This arrangement constrains the 
motion to the longitudinal plane. Swing foot clearance is no longer by passive wobbling, 
but rather by active intervention of small motors in each leg. But apart from the 
retraction mechanism the legs are rigid, and the only other moving part is a free pin 
joint at  the hip. The feet are semicircular and have rubber soles. 

Figure 3 illustrates the behaviour of the test machine. We start it by hand on a 
shallow slope, in this case 2.5%. After a few steps it settles into a reasonably steady 
gait, with some characteristic step period and step length. Figure 4 compares experiment 
with prediction over a range of slopes. The agreement is reasonably good, so we can 
have some faith that the analytical model is a sound basis for further work. 

The data of figure 4 can also be compared with human walking. For such comparisons 
dimensionless units are particularly convenient; thus our analysis throughout is cast with 
total mass m, leg length 1, and gravity g providing the base units. Hence the unit of 
time is fi , and the step length is measured by the angle o of the leading leg. In some 
casual experiments with a 75cm toddler and a 195cm adult, we found TO m 2 for each 
in a comfortable gait, with oo m 0.3. For the same stride length in figure 4, TO m 2.8. 7-0 
values closer to those for a human can be achieved with different machine parameters 
(as in figure 9) which suggests that man and machine exploit the same dynamics, at 
least to first order. 

Another result from figure 4 is the fundamental efficiency of walking. Different modes 
of transport are often compared by specific resistance, i . e .  mean "drag" force normalised 
by weight. The classic comprehensive comparison is by [Gabrielli 501. For a gravity- 
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powered vehicle the resistance is just equal to the steady-state descent angle, and so 
about 0.025 for our test machine walking with a. = 0.3. This compares favourably with 
an aircraft or high-speed boat, and would be still lower, perhaps by a factor of two, if the 
machine had a massive torso (cf. figure 9). On the other hand, a specific resistance of 
0.01-0.02 is not so good compared with wheeled machines, not to mention the difference 
in speed. But then one must expect to give up some efficiency in return for going where 
wheels cannot tread, which is, of course, the sine qua non for legged locomotion. 

3 The synthetic wheel 
To understand the dynamics of passive walking, consider a "synthetic wheel": a machine 
like ours but with parameters chosen for analytical simplicity. As shown in figure 5, it 
has a large mass at  the hip, which effectively prevents swinging of the free leg from 
accelerating the stance leg. It also has feet with radius equal to the leg length, which 
reduces the stance leg to nothing more than a spoke in a wheel. So like a wheel the 
stance leg will roll at constant speed along a flat surface, as plotted in figure 6. 

Meanwhile, since the hub of the wheel travels at constant speed, the free leg reduces 
to an ordinary unforced pendulum swinging sinusoidally at  its natural frequency. So 
(provided that the swing foot is kept clear of the ground) a step can proceed as in 
figure 6. The cycle rolls along like an ordinary wheel, and in the absence of friction 
would have zero specific resistance. 

For practical use one would prefer a machine with smaller feet and more flexibility 
in the mass distribution. The general arrangement sketched in figure 7 covers a wide 
range of design options. Of course the motion of such a system is somewhat more 
complicated than that of the synthetic wheel, and there is some specific resistance. With 
R < 1 energy is lost at  each support transfer, by the same mechanism that causes a 
wobbling domino to lose energy as it rocks from edge to edge. Nevertheless the synthetic 
wheel provides a first-order approximation for the walking cycle (cf. figures 6, 20). In 
particular, it predicts the period of one step, which can be calculated by matching start 
and end conditions for the two legs, as follows. 

The stance leg rotates at  constant speed, so 

Meanwhile the swing leg moves sinusoidally, so that 

Combining these leads to the conclusion that 
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By comparison w~ for our machine turns out to be 1.39; thus WFTO = 3.89 at a0 = 0.3. 
The synthetic-wheel approximation leaves only a 4% error. 

Notice also that TO for the synthetic wheel does not depend on ao. Thus to change 
the forward speed one adjusts not the cadence (except to the extent that the pendulum 
frequency decreases for large ao) but rather the amplitude of each step. Figure 4 shows 
that this is quite a good approximation for our machine, and it also applies to people; 
changing speed by a factor of three changes ro by only a few percent. 

Thus a machine of the type shown in figure 7 exploits much the same effect as 
sustains a synthetic wheel. However, it is expressed in a more elaborate mathematical 
form, which we will now develop. 

4 Analytical procedure 
The walking cycle has two phases: stance and support transfer. Each phase has a 
corresponding set of equations. The stance equations allow one to jump mathematically 
between the support-transfer times in figure 6. Thus given the leg angles 6 and speeds 
6 just after support transfer on step k, one can calculate $and 6 just before support 
transfer on step k + 1. The support transfer equations then give the change in fi 
on heel strike, which we model as impulsive and inelastic. (Results such as those in 
figure 4 indicate that the impulsive approximation is quite good for the hard surfaces 
on which our experiments have been done, although for large a. leg bending dynamics 
do become noticeable.) Putting stance and support transfer together produces a set of 

-+ -+ 

4 nonlinear step-to-step (S-to-S) equations, relating (8  , $2) at  the start of steps k and 
k $1. Requiring repetition from step-to-step then produces the steady-cycle conditions. 

Existence of a steady cycle for an arbitrary choice of slope and machine parameters 
is by no means guaranteed, but it turns out that cycles do exist over a broad range of 
conditions. When a cycle is found, the next issue is stability. We address this issue 
by linearising the S-to-S equations for small perturbations on the steady cycle, and 
then applying standard stability analysis for linear systems. These linearised equations 
are useful not only for studying transient behaviour, but also for analysis of candidate 
control laws. 

If the gait is found to be stable for small perturbations, the next question is, "how 
small is small?" There is certainly a limit: obviously if the machine is released from 
rest with legs vertical, it will topple over rather than walk. Some guidelines for the 
allowable range of perturbations emerge from our examples, but in general one must 
find the answer by numerical solution of the nonlinear S-to-S equations. 

We begin by developing walking equations for a "basic biped," and later add terms 
for toe-off pulsing and a torso. 
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5 Stance dynamics 

The equations of motion for the biped during stance are derived in appendix B. For our 
purposes at this point only their form is important, namely 

-+ 

The general equations are nonlinear, with trigonometric terms in y and 0, and centrifugal 
terms in 6. But for walking linearisation about legs-vertical is quite justified, since the 
legs never swing beyond 0.4rad of the vertical, and dimensionless speeds always remain 
small compared with unity. (From figure 6 and (I),  the order of S2 is 2ao/r0, so about 
0.3 at most. In fact walking with R approaching unity is impossible; centrifugal effect 
lifts the stance leg off the ground, and one has to run.) 

The RHS of the stance equations (4) includes gravitational torque, and possibly 
frictional and control torques as well. The gravitational contribution is derived in ap- - 

pendix B; it has the form 
T-, = K[A& - ~ 8 7  ( 5 )  

Here Ae'is the shift from the reference position of Bc = 0; OF = T .  (Note from figure 7 
that 0 is measured with respect to the surface normal rather than the vertical.) 
is the static equilibrium position; for small y it is given by 

If the foot radius is zero, and the mass centres are on the leg axes, then for equilibrium 
both legs must be vertical, and both elements of are -1. If the foot radius is nonzero, 
then the stance leg must rotate beyond the vertical to put the overall mass centre over 
the contact point, and GI < -1. A& accounts for any offset between the legs axes and 
their mass centres. 

Additional torque terms due to friction or control application may have a variety of 
forms; several are treated in our examples. The only condition necessary for convenient 
analysis is that these terms remain linear in $and 6 . That allows the stance equationi 
(4) to be solved in terms of transition matrices, as reviewed in appendix E: 

With this set of transition eqdations one can compute the conditions at the end of the 
kth step given the step period .rk and start-of-step conditions A& and dk. 
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6 Support transfer 

Next the support transfer equations must be invoked to get from the end of step k to 
the start of step k + 1. The event is approximated as an instantaneous exchange of 
support just as the swing foot hits the ground. The forward leg's angle at  that instant 
is defined to be - a k ,  and the rear leg's angle satisfies 

Most simply, cos A617 = cos C Y ~  with matched legs, but in general we write 

where 

Notice that since A$ is defined with respect to the surface normal, X is independent 
of y. On this point it is also worth noting that if one were interested in stairs rather 
than a smooth slope, then y would be zero, and the height change would appear as a 
modification to x. 

At support transfer the legs exchange roles, and so the indices of 6 are flipped. Thus 
define the "flip" matrix F, 

Then -. -. 
ABk+, = X = FA$(T~) 

So much for the change in leg angles at support transfer, which is just a matter 
of bookeeping. The change in leg speeds, on the other hand, involves some physics. 
Conservation of angular momentum holds for the whole system about the point of 
collision, and for the trailing leg about the hip joint. The details are developed in 
appendix D; again only the form of the equations is required for present purposes, 
namely 

n,+, = ~ n ( , )  (14) 

The matrix A is a function of a at the instant of support transfer. It also incorporates 
the "flip" matrix to exchange leg indices. 
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7 Nonlinear st ep-to-step equations 

Putting the stance transition equations (7), (8) together with the support transfer con- 
ditions (13), (14) produces the step-to-step equations: 

-. 
These are nonlinear, since A is a function of a k + l ,  and r k  is a function of a k  and ilk. 

8 Solution for the walking cycle 

If a steady cycle exists, then initial conditions will repeat from step to step: 

One can impose these conditions on the S-to-S equations (IS), (16), and derive a compact 
solution for the steady cycle. First, solve for Go using (16): 

60 = [I - A D ~ ~ ] - ~ A D ~ ~ [ . L ~  - A ~ S E ]  (19) 

Then substitute for 60 in (15); the end result can be written as follows. Define 

D1(ao, TO) = Dee + Den[I - ~Dnn]- 'ADne  (20) 

Then (15) can be written as 

The last line follows from (6). This is the steady-cycle condition. Any one of a o ,  TO, or 
y can be specified as the independent variable. Usually we specify ao. (21) then has 
either two solutions or none. If two, then one cycle has WFTO < T, and is invariably 
unstable. The other corresponds to  a synthetic-wheel-like cycle (figure 6 and (3)) with 
WFTO between w and 3 ~ 1 2 .  This is the solution of interest, and since (21) is nonlinear 
in 7-0, we search for it by Newton's method. The synthetic-wheel estimate for TO (3) is 
obviously a good starting point, and if a solution exists, convergence requires about 5 
iterations. 
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9 Linearised step-to-step equations 

Once a steady cycle is found, the question of stability arises. To address this question, 
it is perhaps best to think of the S-to-S equations (15), (16) in the form 

One could add more variables to the argument list -. of {, such as foot radius, leg length, 
etc. However this list is sufficient for the moment. f can be expanded in a Taylor series; 
thus 

-+ -. - af a f 
f(rk,ak+l,~k+l,ak,~k,7,...) f o  + -Ark + - Aak+l+ . . . 

a7k dak+l (23) 

-+ 
If the reference condition for expansion is the steady cycle, then fo = 0 (22). So for 
small perturbations on the steady cycle, the S-to-S equations are 

Appendix E develops the terms of this equation in more detail. The advantage of the 
linear approximation over the exact S-to-S equations (15), (16) is that gait stability 
can be assessed by a standard eigenvalue calculation. Actually only the upper 3 x 3 
submatrix of S is needed; the fourth equation in the set, for  AT^, supplies ancillary 
information. Thus if the three eigenvalues of (26) have magnitude less than unity, then 
the walking cycle is stable with respect to small perturbations. (Of course this is the 
desirable situation, but failing that the linear formulation is helpful for design of a 
stabilising control law; this was in essence the approach of [Miura 841.) 

In matrix form, this is - - 

~f 

If one knows the conditions at the start of step k, one can use this (and the steady-cycle 
solution) to predict initial conditions for step k + 1, and the step period. Thus solving 
for the unknowns in (25) produces a linear system of the following form: 

Aak+l 
~ f i k + l  

Ask 
Auk 
~6~ 
A7 

%(j (25) 
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To avoid any confusion you should recognise that we have gone through two stages of 
linearisation to reach this point. First, the stance-phase differential equations (4) were 
linearised about legs-vertical. Their solution was incorporated into nonlinear S-to-S 
equations (15), (16), which led to solution for the steady walking cycle. Then the S-to-S 
equations were linearised about this cycle. As I have explained, the stance linearisation 
is worry-free for walking, but the S-to-S linearisation must be used with due regard for 
its limited range of validity. 

10 Energy input by applying torque to the legs 

In [ ~ c G e e r  881 we used the analysis developed above for extensive calculations of the 
effects of various parameters - especially R, r,,,, c, w, m ~ ,  and y - on gravity-powered 
walking. Here we want to evaluate various strategies for energy input and gait control. 
The first strategy to  investigate is direct torquing of the legs. 

Actually there are several options within this category. Torque might be applied at  
the hip joint, so that the legs react against each other. Alternatively, torque might be 
applied to the stance leg only, through an ankle joint, or more conveniently by reaction 
against a leaning torso. A separate issue concerns scheduling the torque during the step. 
The simplest option is constant torque, in which case the addition to the torque vector 
in (4) would be 

AP = [ ? I  for torque on the stance leg 

-+ 
AT = [ -rH ] for torque at  the hip 

These terms work their way into the S-to-S equations (15), (16) through modifications to 
Alternatively, one could vary T in proportion to 6; the effect would be the same 

as viscous damping and would modify the transition matrix D. It turns out, however, 
that viscous torque and constant torque have very similar effects, so the dynamics are 
apparently not sensitive to  the details of the torque schedule. 

Hence we offer as representative only a set of constant-torque results. These are 
plotted in figures 8 and 9. We chose parameters for the example as typical of what is 
reasonable in a walking machine. (YO = 0.3 is a comfortable stride for human walking. 
R = 0.4 is a good balance between the high efficiency and forgiving dynamics obtained 
with large feet (as in a synthetic wheel) and the small footprint of small feet (which a 
practical machine would need to climb stairs). r,,, and c are not terribly critical. r n ~  
is a point mass at the hip, which roughly represents the effect of putting a torso on top 
of the legs; more rigorous analysis is done later in the paper. Note that the specific 
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resistance (i.e. slope for T = 0) with r n ~  = 0.7 is only half that with r n ~  = 0; the 
higher overall mass centre reduces the loss at support transfer. 

Focus attention now on figure 9, whose message, in summary, is this: stance torque 
is effective for going downhill but not uphill. On the other hand, hip torque is more 
effective for going uphill than downhill, but it really isn't very helpful in either direction. 
Some explanation is required to decipher this message from the plot. First note that 
each curve comes to  an abrupt end in the midst of the figure. Beyond these points 
there is no steady walking cycle, i.e., no solution to  (21). The plots of step period show 
that vanishing of the steady cycle corresponds to TO reaching some minimum permissible 
value. In fact this minimum value is close to but somewhat larger than UFTO = T, or by 
comparison with figure 6, time for only half a swing leg cycle during the step. Hence 
the cycle vanishes because the stance leg topples forward more quickly than the free leg 
can swing through. 

As TO increases from this minimum value, there is a range over which all three 
eigenvalues of the S-to-S equations (26) are smaller than unity. (Only the largest in 
plotted as lz l .)  But then there is a transition to instability, which is perhaps less 
malignant than complete vanishing of the walking cycle, but still quite unwelcome. In 
fact, as later examples show, the limited range of desirable TO indicated by figure 9 
is common to all strategies for energy input. Thus half the battle in steady powered 
walking - and in step-to-step gait variation - is to keep the step period in this range. 

Before proceeding further I should make a couple of notes about figure 9, so that its 
main message is not obscured by odd details. First, while it is intuitive that negative 
stance torque should slow down the step, the opposite effect of hip torque may be 
surprising. The explanation is that negative hip torque not only decelerates the stance 
leg, but also reduces the swing amplitude. This causes "earlier" heel strike, and so 
reduces TO. Other features which catch the eye are the kinks in the plots of stability 
index. (The kinks are somewhat more pronounced in later figures.) These leave a 
misleading impression of some dramatic event; in fact it is just an artifact of plotting 
only the largest of the three eigenvalues of the S-to-S equations (26). The kinks indicate 
a change in ordering of the eigenvalues; if all three were plotted one would see just two 
smooth curves intersecting at these points. 

The main issue raised by figure 9 now confronts us: torque application to one or both 
legs allows steady walking over only a limited range of slopes around that for passive 
walking. Extending this range is a matter of obvious practical interest. As it turns out 
a simple adjustment is quite effective. We call it w, which means offsetting each leg's 
mass centre from the axis of the leg. Figure 10 shows that w, like T in figure 9, has a 
powerful effect on step period and stability. Hence the two parameters can be played 
against each other to maintain stable walking over a broad range of slopes. This works 
for both stance torque and hip torque. 

These calculations indicating such high sensitivity to w left us quite surprised. There- 
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fore we checked the calculations against experiment, as plotted in figure 11. The agree- 
ment is not completely satisfactory: if we take rolling friction to be -0.007 to match a 0  

and TO, then calculations indicate a range of instability whereas tests could be sustained 
over three 6-foot tables placed end-to-end. On the other hand, if rolling friction is taken 
to be zero, then we get a better match to the stable w-band, but relatively poor agree- 
ment on a. and TO. We suspect that the discrepancy arises because support transfer 
is more complicated that our model specifies, perhaps because of slipping or rebound. 
Nevertheless the similarity between model and measurement is sufficient to confirm that 
w is indeed a powerful parameter. Note that the acceptable range of w is only 1% of 
leg length, or 5mm.  That seems remarkably narrow, but in fact it is very perceptible. 
A few m m  makes quite a difference to the feel of manual starting. 

. . 
11 Step-to-step gait variation 

Figures 8, 9, and 10 illustrate walking in steady state with various stride lengths. But 
what about varying stride length from one step to the next? Obviously this is an 
essential capability for practical legged locomotion, which could be competitive only 
in places where points of support are intermittent or irregularly spaced. To bring the 
problem into focus, imagine crossing a (2D) pond via a series of stepping stones. As 
the foot lands on the kth stone, the position of the next stone is known (and hence the 
necessary value of ak+1). The question is, what control should be applied to strike it? 

Various adjustments could be made to vary the gait from step to step; for the moment 
consider variations in stance and hip torque. These affect the equilibrium position 
and an appropriate value for during the kth step can be calculated from the S-to-S 
equation (15):  

-. 
If one chooses a k + l  and ~ k ,  then nosEk follows. Torque adjustments, in turn, are given 
by 

Since is linear in Tc and TH, this control is exact so long as the model is perfect. 
Of course in practice the model will not be perfect, and so if the control given by 

(30)  were maintained throughout the step one would be left with some error in foot 
placement. This error could be reduced by evaluating the control law continuously 
throughout the step. That is, use the stance transition equation ( 7 )  rather than the 
S-to-S equation (15) to choose 
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The transition matrices are evaluated not for the full step period, but rather for the 
desired time remaining to heel strike ( T ~  - 7). One must be somewhat careful, since 
[I - Doe] vanishes as T + and so one will exhaust the control torque if one applies 
(31) too close to the end-of-step. However, a control law along the lines of (31) will 
certainly improve foot placement even if used for only part of the step. 

Figure 12 offers an example of foot placement control with a perfect model. We 
imagine scattering stepping stones with spacing varied randomly about a mean value 
of a. = 0.25. We select w and a nominal value of Tc to generate a steady walk with 
a 0  = 0.25, y = 0, as in figure 10. Walking proceeds across the stones, with ATc, ATH 
on each step selected according to (29) and (30), while the step period is maintained at  
the steady-state value. As you can see, precise and dextrous foot placement is possible 
with quite modest control variations. 

The choice of Tc and TH as stepping-stone control variables is not essential. w is 
an attractive alternative; values for each leg can be adjusted independently, and small 
adjustments produce large effects. (In fact, humans may produce similar effects by 
varying foot shape.) However, formulation of a control law analogous to (30) involves 
more than just calculating new gradients of dSE. The problem is that the stance 
equations treat w as constant; they do not account for dynamic  changes. To properly 
formulate a control law for w, one would have to account for the recoil produced by 
shifting part of the leg mass. 

The stepping-stone control law (29) has other applications. In particular, if one 
wanted to accelerate the natural convergence as shown in figure 3, or to walk in the 
unstable range of figure 9, then one could set a k + l  = QO, r k  = TO and simply use (29) 
as a regulator. The same control law could also be used to maintain an even gait over 
rolling terrain, i.e. with slowly varying y. (Note, however, that the S-to-S equations as 
written are not valid for dynamic  changes in y. For example, they do not account for 
the step change in 8- measured from the surface normal - which would occur at  a kink 
in the floor.) 

12 Energy input by varying leg length 

Return attention now to the problem of steady powered walking. The qualitative idea 
of the next scheme is to "fake" a downhill grade by leg length adjustment. That is, if 
the swing leg were shortened relative to the stance leg prior to support transfer, then 
the effect would be like taking a downhill step. The required length adjustment can be 
estimated as follows. If yp is the slope for passive walking, then 
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mg 2Qo 1 ( 7 ~  - 7) = -mg A1 
energy required energy input by 

for climbing raising mass centre 

For shallow slopes this amounts to no more than a few percent. Such small length 
changes can be neglected in the stance equations (4) as one can show analytically, or 
simply by observing that the reference state for linearisation is resting with legs vertical. 
Changing leg length in that state causes no angular acceleration; hence Ab has no first- 
order effect. Thus length change enters the analysis only through the support-transfer 
equations (9) and (14). 

The insensitivity of stance dynamics to leg length change is more than just a math- 
ematical simplification. It also means that timing of a length change is not critical; 
extension of the stance leg, and retraction of the swing leg, need only be sufficiently fast 
to prevent toe-stubbing in the middle of the step. This is appealing from a practical 
point of view, as is the fact that retraction actuators are required in any event for foot 
clearance. Thus we could kill two birds with one set of actuators. 

Figures 13 and 14 show the effect of leg length variation, with parameters as in 
earlier examples. We have made one small change from figures 8 and 9. If a 0  were kept 
constant, then the step length would vary with Al. Step length is a more reasonable 
parameter to fix, so we have adjusted a 0  with A1 accordingly. Figure 13 shows Al 
varying with slope just as simple energy analysis suggests. Meanwhile figure 14 shows 
the effect of length variation on stability. The plots are directly comparable with figure 9 
for torque application. Both figures show stable walking over only a limited range of step 
periods; the ranges indicated by the two figures are almost identical. The corresponding 
range of feasible slopes in the length-change case is usefully broad with any one value 
of w, and the range can be extended by varying w, just as in figure 10. 

Thus we have two promising options for powered walking, and at  this point it is 
perhaps worthwhile to stop briefly to appreciate the robustness of the walking mode. 
At first glance a pair of coupled pendula, whose most notable feature of static instability 
is not obviously helpful, would not seem very likely to walk all by itself. Now it emerges 
that walking is a natural mode over quite a variety of conditions - which, in fact, we 
have hardly begun to  explore. 

13 Energy input by toe-off pulsing 
Next we turn to  an energy-input strategy which seems quite analogous to  human walk- 
ing. This is to push with the trailing leg as it leaves the ground. Of course an inescapable 
limitation of this strategy is that it can only be applied for adding energy, which is of no 
help if one wants to go downhill, i.e. 7 > ̂ /p. For the downhill range one could shift the 
burden to the forward leg, pushing at  heel strike. That, however, conveys a powerful 
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sense of bone-jarring aggravation at the already stressful event of support transfer. A 
more, benign technique of backward leaning of the torso is treated later in the paper. 

For analysis of toe-off pulsing the S-to-S equations (15), (16) must be modified to 
include the energy input, which we approximate as impulsive. This approximation has 
to be treated with some care, since a true impulse would throw both legs right off the 
ground. Consequently there is a minimum impulse-application time, set by the condition 
that the leading foot must maintain a positive contact force. The limit is calculated 
in appendix G. It turns out to be a small fraction of the step period (< O.lrO), SO the 
impulsive approximation is not bad. 

The impulse produces an instantaneous change in A, which can be calculated by 
a matrix multiplication analogous to (14). The form is most easily derived from an 
expression for the energy input, which itself proves quite useful for efficiency and stability 
calculations. The work done by the impulse is the product of displacement and force, 
which in the limit is 

a denotes the point of application, "-" denotes immediately pre-impulse, and "+" im- 
mediately post-impulse. The work done must be equal to the change in kinetic energy, 
which is 

1 ++T --T 1 ++ 
E = -[a M 6'- n M 6-1 =-[n +A-lT M A A  

2 2 (33) 
is proportional to 6, according to an equation of the form 

9 = G ~ A  
Thus eliminating Y in (32) and then solving (33) for Afi leads to 

1 T '  AA = M- G,P = raP (35) 
Note that M, Ga ,  and I'a are functions of g a t  the instant of impulse application, which 
we take to be the start of step. 

The effect of the impulse is to modify the initial fi in the stance equations (7), (8). 
These now become 

A ~ T , )  = D~,[A& - AL] + Den [dk + rap] + AGE (36) 

A(%) = ~ n e [ ~ &  - A&,] + Dnn [fir + r a p ]  (37) 

The S-to-S equations (15), (16) in turn become 

XQk+,  = F ( ~ e e [ X  ~r - A ~ S E ]  4- Den [fix + raF] + ~ 8 s ~ )  (38) 

&+I = A ( ~ n e [ X  ai - ~ 8 s ~ l - k  Dnn [fir + rap]) (39) 
Notice that the reference point in the cycle remains immediately after support transfer 
but be f o ~  impulse application. 



14 Steady walking conditions with pulsing 
New steady walking conditions follow from exactly the same derivation as led to (21). 
With @ included, the steady-cycle 6 (cf. (19)) is 

do = [I - A D n n 1 - l ~  [ D n s [ L o  - AGE] + Dnnra@o]  (40) 

The steady cycle conditions (cf. (21)) become 

If $0 = 0, this reduces to the condition for passive walking. A particularly attractive 
feature of impulse power is that the passive walking solution can be made independent 
of the slope. That is, @,-, can be chosen to cancel the 7 term in (41): 

Then the same (ao, 70) which satisfy (21) with Po = 0 will continue to apply for all 
slopes. (A, however, will change with slope according to (40).) Thus while (42) is 
certainly not the only nor necessarily even the best choice for $0, it does avoid the 
problems due to varying 7-0 which arise when one supplies energy by length variation or 
torque application. Moreover, another nice feature of (42) is that the direction of Po is 
independent of y. 

15 Linearised step- to-st ep equations with pulsing 

As always, once the steady cycle in found, its stability must be assessed by linearising 
the S-to-S equations. In this case, 

If @ is invariant from step to step, then one can assess stability just by calculating the 
eigenvalues of S. With example parameters as used for torque and length variation 
(figures 9 and 13), we found that constant-? stability is not bad, but on the other hand 
not so good as one would like. At this point a happy coincidence emerges between 
what is practical to design, and what is desirable dynamically. Our plan is to apply the 
impulse by spring-driven pistons built into each leg. Each spring will be wound to a 
specified compression during the stance phase and triggered at support transfer. Two 
effects will then cause ? to vary with perturbations in the walking cycle. First, the angle 
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of application will vary with Aa .  This effect turns out to be somewhat destabilising. 
Second, the magnitude of P will vary such that the energy delivered remains constant. 
Thus according to (32), if the leg speeds increase, the impulse decreases. This effect is 
strongly s tabilising. 

For our purposes, then, the most convenient control variables are not the two com- 
ponents of P ,  but rather the energy input E and the angle of actuation relative to the 
leg E. Appendix F shows how the linearised S-to-S equations (43) can be recast in terms 
of these variables; the result is 

16 Stability of impulse-powered walking 
Figure 15 shows the stability obtained with constant-energy pulsing of our example 
bipeds. Po is chosen according to (42), and the impulse is applied a t  the foot's centre of 
curvature. This reason for choosing the centre of curvature is that the lower leg could 
be rotated about it (thus changing E) without affecting other design parameters. As the 
figure shows, the choice has dynamical as well as mechanical appeal: stability is quite 
good over a broad range of uphill grades. 

Up to this point we have limited attention to a. = 0.3, which is representative of a 
"comfortable" gait. But both longer and shorter strides are also useful. Thus figure 16 
provides examples of varying both a. and 7. (Note that only "uphill" slopes are plotted 
in this figure, i.e. with P, > 0.) As the grade steepens the short-stride gaits break down 
first. Actually a static analysis suggests this result. Imagine the legs standing still with 
hip angle 2ao, as in figure 7: the static stability of this stance becomes marginal as y 
approaches f ao. 

The actuator angles 6, as given by (42) for each value of a o ,  are tabulated in the 
* figure. Since all E values are quite small, it would seem sensible just to build the actuator 

parallel to the leg, i.e. 6 = 0. This option is explored in figure 17. It shows a significant 
reduction in the range of stable a0 and 7 ,  so walking is rather sensitive to E. Indeed 
the margin for error in E, even on a modest grade, is only of order l0mrad. Such high 
sensitivity raises concerns about the validity of the impulsive approximation. While the 
leg will not rotate very far in the finite time actually required to apply the impulse, the 
rotation will certainly be of order lOmrad or larger. Hence (42) may not estimate 6 

with sufficient accuracy for design. Instead appropriate settings might best be found by 
experimentation and, perhaps, closed-loop adjustment. 
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17 Stepping stone control by toe-off pulsing 

Of course toe-off pulsing can be varied dynamically for step-to-step control. (38) can be 
used to formulate a control law, as in (29). The difficulty is that shortening of the step 
can easily call for the trailing foot to pull on the ground! Thus dynamic P adjustment 
has its limitations, and must be supplemented by another control. 

18 Walking with a perfectly stabilised torso 

Since toe-off pulsing is good for uphill walking (figure 16), and stance torque for downhill 
walking (figure 9) these two methods are nicely complementary. But of course one needs 
some physical mechanism for applying stance torque. Leaning of the torso is the natural 
method. That is, holding the torso at  some angle to the vertical calls for some steady 
torque; this can be supplied by reaction against the stance leg. 

We have two methods for treating the torso analytically. The simpler involves spec- 
ifying that the torso angle remains constant throughout the step. This cannot be pre- 
cisely true, since an impulsive stance/torso torque would be required at support transfer. 
However, it seems a reasonable approximation for most practical walking systems, and it 
simplifies analysis. The more elaborate method allows the torso to sway, which adds two 
degrees of freedom (BT and (RT) to the stance and S-to-S dynamics. It also requires spec- 
ification of a control law for torso angle. Fortunately, the constant-BT method provides 
a reasonably complete description of the role of the torso in walking; the swaying-OT 
method is mainly useful as a check on accuracy. 

For the moment, then, suppose that the torso link is put on the legs as in figure 7, 
and that its angle can be held constant throughout the step. Two items must be added 
to the list of design parameters: the angle BT, and the torso mass centre, CT. Stance, 
support transfer, impulse coupling, S-to-S, and steady walking equations can be derived 
by the same procedure as was followed above. In fact, the results are in form exactly 
the same as (36), (37), (13), (14), (35), (38), (39), (40), and (41). Only the definitions 
of terms change; these are presented in appendices A and C. The linearised S-to-S 
equations are also as in (44). 

Now consider the variety of steady gaits possible for a given slope and stride length. 
In fully passive walking, 7 determines rro and .r, uniquely. With P as the control variable, 
one can choose all three independently. Here one can choose all three, plus OT. This 
freedom can be made explicit in the steady-cycle equations (41) by expressing as 
follows: (cJ (6)) 

AgSE = As', + &y + ZTBT (45) 
Then the steady-cycle condition (41) becomes 
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While OT can be chosen freely, it seems natural to vary it with y so that the torso attitude 
is constant with respect to the vertical. An appropriate choice for Po, analogous to (42), 
is then 

30 =   en[^ - ~ ~ n n ] - ' r ~ ]  -' [Dl - I] ( F +  zT) (y - yP) (47) 

This condition is not obligatory, but it does have the attractive feature, in common 
with (42), of making both r0 and E invariant with 7. 

Figure 18 illustrates solutions for (46) over a range of both up- and downhill slopes. 
Essentially the plot gives the control to use for steady walking at  any selected a. and 
y. The parameters are similar to those in previous examples, except that we have 
added CT = 0.3. Starting a t  the right (downhill) end of the plot, 9 = 0 and the gait 
is established by leaning the torso backward. As the slope moderates, so does the 
lorso's recline, eventually reaching OT = -7, i.e. vertical. From that point OT = -7 is 
maintained, and Po is selected according to (47). 

Figure 19 indicates the corresponding step period and stability for striding with 
a 0  = 0.3. In this example stable walking can be established by torso inclination alone 
on downhill grades ranging from zero to slightly more than 10%. Torso-controlled uphill 
walking is precluded by an unacceptably short step period, as in figure 9. So for uphill 
walking, BT + y can be fixed, and P selected according to (47). However, (47) applies 
only over the range of torso angles for which there exist "downhill" walking solutions. 
If one wants to lean further forward, or change the step period from that used in down- 
hill walking, then one can return to the steady-cycle condition (46) and calculate the 

-, 
appropriate Po. This strategy is perfectly satisfactory, although it does carry the cost 
of varying E with slope. Also, it fails if the slope calls for the trailing foot to pull rather 
than push; hence the gap between the "uphill" and "downhill" solutions. An alternative 
is to shift the range of OT for "downhill" walking by adjusting w, as shown in figure 22. 
The penalty in that strategy (as demonstrated by y us w in figure 10) is slightly higher 
specific resistance. 

Thus addition of a torso creates quite a variety of walking solutions, but they can 
all be understood in terms of legs-only walking. Actually figure 19 is little more than a 
composite of results for stance torquing (figure 9) and toe-off pulsing (figure 15). So the 
overall message of figures 18 and 19 bears out the qualitative concept of the torso's role 
in walking: it can be used to generate stance torque, while leaving the walking mode 
intact. 

19 Stance dynamics with a swaying torso 

So far so good, but figures 18 and 19 were calculated with the torso perfectly stabilised. 
In practice, of course, it is jerked forward a t  support transfer. Presumably if the return is 
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rapid, then the gait will be very close to that calculated with perfect torso stabilisation. 
But in any case a precise calculation is quite straightforward. 

Actually the analysis remains in form very much the same as always. But an impor- 
tant new term is active control to keep the torso upright. An appropriate control law 
can be formulated most easily if one imagines planting the legs firmly on the ground. 
Then the torso becomes an ordinary inverted pendulum, with (dimensionless) equation 
of motion 

m~ (c$ + ~,2,,,) OT k m~ CT (OT + Y) + TCT (48) 

One has a great deal of freedom in choosing the control torque TcT, but for our purposes 
simple linear feedback is quite satisfactory: 

The closed-loop natural frequency is then 

The damping ratio is 

Steady-state angle and torque are 

With WT >> 1 / ~ ~ ,  and CT x 1, OT is held nearly constant at  19; - i.e. the perfectly 
stabilised case. At issue here is how smaller WT affects the walk. Notice that torso sway 
brings three new parameters into the model: WT, cT, and T,,,,. 

For analysis of swaying-torso walking, the stance equations are a 3 x 3 version of (4) 
with terms modified as discussed in appendix A. Note that ;is now 

The torque vector has the gravitational component as in (5), plus the active control: 
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Note that TCT is supplied by a reaction against the stance leg, while the swing leg is left 
free. (At support transfer the torso actuator must switch legs promptly; otherwise the 
erstwhile stance leg, having suddenly become much easier to move, would be launched 
on an errant trajectory.) Inserting the torso control law (49) and collecting terms leaves 
the stance equations in the form 

The damping matrix is 
0 0 -kT TT 

c T = [ o o  0 0 kT 0 rT 1 (57) 

The modified stiffness matrix is 

The new static equilibrium is 

or, by analogy with (6) -. * 
A e E T  = + bT + iiT:TBj. (60) 

The solution of the stance equations (56) has the same form as (7), (8), but with I$ and 
6 redefined, substituted for AgSE, and 3 x 3 transition matrices. 

20 Support transfer and impulse coupling with a 
swaying torso 

The step starts when the leg angles satisfy (9), i. e. equal and opposite if the leg lengths 
are equal. However, the torso angle can be specified independently, so 
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In support transfer the leg indices are flipped, while the torso angle remains constant. 
Thus the flip matrix (12) must be redefined as 

Then 
-+ 

Adk+, = F ~ 8 % )  
Meanwhile the speed change is calculated just as in (14), with AT now 3 x 3. AT 
is derived in appendix C. Impulse coupling immediately after support transfer is also 
calculated just as in (35), with MT now 3 x 3, and Ga 2 x 3. 

21 Nonlinear step-to-step equations with a sway- 
ing torso 

Redefinition of As' at support transfer (61) calls for a minor change in notation for the 
S-to-S equations (38), (39). iak is replaced in favour of A&; thus 

A&+, = F (DOO[A& - A @ ~ T ]  + Den [fir + raF]  + A@ET) (64) 

fir+, = AT ( ~ n s [ ~ &  - A@ET] + Dnn [fir + raF] )  (65 )  

22 Steady walking with a swaying torso 

The steady walking conditions also involve as small change in notation. From (40), (41), 
these become 

One can use this last formula in a variety of ways. As in the solution for passive walking, 
-# 

one can specify Ado - i . e .  the stride length, and torso angle at the start-of-step - and -. 
solve for TO, 7, and 8). Alternatively, one can specify A&, TO, and 7, and solve for Po 
and 8). 
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23 Linearised step-to-step equations with a sway- 
ing torso 

The linearised S-to-S equations become fifth order, with OT and aT added to the state 
vector. Derivation proceeds as for (44), with the original gradients modified, and new 
terms added for dT, SIT, and 8%. The result is 

24 Examples of walking with a swaying torso 

Now consider a few examples. First, figure 20 shows a walking cycle including a swaying 
torso. Torso stabilisation is rather soft in this case, so that the jerk at  support transfer is 
followed by a pronounced forward sway and recovery requiring the full step period. Since 
the torso has OT > 0 throughout the cycle, the average stance torque is positive, and 
this reduces the step period just as in figure 9 - with the same unhappy consequences 
for the walking cycle. This is shown by figure 21: as torso stabilisation softens, the step 
period decreases and ultimately disappears. As ever, the remedy is a negative shift in 
w, which allows walking with quite slow control at  the cost of slightly higher specific 
resistance. So the message is that torso sway is tolerable but certainly not desirable. 

Figure 22 takes up the question of slope. In this case we have included an example 
of using us to shift the range of "downhill" walking. Otherwise the same variety of solu- 
tions appears as in figure 19, and the same explanations apply. So while swaying-torso 
calculations are much more elaborate than steady- torso, or indeed legs-only calculations, 
the results are much the same - which, of course, is the simplest and best of all possible 
out comes. 

25 Step-to-step gait variation with a swaying torso 

Earlier we discussed "stepping stone" control for a legs-only biped by step-to-step ad- 
justment of stance and hip torque. At the time we didn't specifiy how the stance torque 
might be applied. Now it is clear that torquing against the torso is effective for steady 
walking, and so one wonders whether it is equally effective for step-to-step adjustments. 

In this case, unfortunately, dynamics conspire against us. Imagine making a move 
that calls for positive stance torque. To generate the torque in steady walking, one 
rotates the torso forward. But dynamically, when the torso moves forward, the hip 



Biped walking 23 

recoils backward; thus the immediate effect on the stance leg is roughly opposite to 
that intended! The consequences emerge if one attempts to formulate a stepping-stone 
controller analogous to (29). That is, solve the (Oc, OF) S-to-S equations (64) for the 
control inputs (AO;, ATH) required to take a step of the desired length a k + l  and period 
r k .  (The swaying-torso rather than steady-torso equations must be used, since only the 
swaying-torso equations account for the recoil produced by a dynamic change in OT.) If 
one puts the resulting control law back into the S-to-S equations, one finds that a k + l  

and 71, are regulated exactly as intended, but the remaining state variables go unstable! 
The physical problem is that the controller has to use the recoil to get the immediately 
desired result, but then is left with an untenable "static" torque. 

The instability might be ameliorated by a different control law, but the fundamental 
problem is that torso leaning isn't physically appropriate for dynamic gait control. For- 
tunately t here are several alternatives. For example, torque adjustments might be made 
by a momentum wheel in the torso. (Accumulated momentum would then be dumped 
slowly, against a gravitational torque.) Or stance torque could be dropped entirely as a 
dynamic control, and leg length or w used instead. We are now exploring the options to 
find the best dynamical and mechanical strategy. So further analysis of stepping-stone 
control is left for a later paper, and we can now bring this report to a close. 

26 Summary 

Figure 20 shows the walking cycle with a swaying torso, and is accompanied by a rather 
formidable list of parameters which reflects the large number of terms affecting the 
motion. When faced with an elaborate model producing lengthy equations such as (67), 
there is some danger that the essential effects will not be easily recognised. But we hope 
that by starting the discussion with simpler bipeds and working to the more complex we 
have conveyed the simple dynamics of walking which is common across a wide range of 
parameter variations and control techniques. To make the point, compare figures 6 and 
20. The former, showing the walking cycle of a synthetic wheel, involves nothing more 
complicated than a simple pendulum. Its cycle is easily understood; a key result is that 
the step period satisfies WFTO = 4.058. By comparison the swaying torso example, with 
swing mode frequency WF = 1.30, has WFTO = 3.86; this differs from the synthetic wheel 
value by only 5%. So if one understands completely walking by a synthetic wheel, then 
one understands 95% of walking by an apparently much more complicated system! 

Thus all of our elaborate analysis has not introduced any new physics, but rather 
has simply accounted for a few numerical details, and more importantly defined the 
range of conditions over which common behaviour applies. The news is good. To draw 
another analogy, aircraft have their characteristic ways of oscillating, with the same set 
of modes common among designs ranging from sailplanes to airliners to Space Shuttles. 
Ships also have their characteristic dynamics, as do horns, and so on. Our point is 
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that a pair of coupled pendula also has its natural modes, and one of them is walking. 
The walking mode is not quite so robust as, say, the phugoid mode among aircraft, but 
nevertheless it is present and moreover stable across a wide range of design variations. 
Furthermore, just as one can play a tune on a horn, so one can learn to pump energy 
into the walking mode, to tune it and modulate it, in order to move with dexterity 
and flexibility. Of course use of the walking mode is not obligatory; actuators could be 
illstalled to make the legs move in any way one chose. However, using an unnatural gait 
is roughly analogous to forcing a horn away from resonance. Better to concentrate on 
where you want to go, and let nature work out the details. 

APPENDICES 

A Stance dynamics with swaying torso 

We now derive the linearised equations of motion for the stance phase, including torso 
sway. The legs-only and fixed-torso equations (4) emerge as special cases. Refer to the 
2-D biped as sketched in figure 7. For consistency with [McGeer 881, and following the 
convention for a multi-link kinematic chain, we say that with both legs parallel to the 
surface normal Be = 0 and OF = w. By the same convention, w is positive-forward 
for the stance leg, and positive-aft for the swing leg. Thus on support transfer the leg 
angles switch by n, and w changes sign. 

For the swing leg and torso, the equations of motion are 

where T is the torque on the element, and H is its angular momentum about the hip. 
For the stance leg a similar equation holds, with H the total angular momentum of all 
elements and T the total torque about the point of contact. However, it is easiest to 
subtract the swing leg and torso equations from the stance leg equation; then 

Tc is the torque acting directly on the stance leg about the point of contact. 
The angular momentum of the swing leg is 

where T;IF is the vector from the hip to the swing leg's mass centre. QF is the velocity 
of its mass centre. The expression for the torso is the same except subscript T replaces 
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F. For the stance leg, 

Here Fee is the vector from contact point to stance leg c.m., and FcH from contact point 
to hip. The velocity vectors in turn are 

and similarly for BT. Substituting back into (71) and (72), and working out the vector 
products, leaves a matrix formula for the angular momenta. Define 

Ic m c  (rlyTc + cc2 + wc2 + 2R(cc - R)(cos dc - 1)) - 
2mc Rwc sin dc + 

( m ~  + ~ T ) ( E C ~  + 2~~ - 21cR + 2R(lc - R)  cos dc) (75) 

IFC = mF(Zc - R) ((lF - cF) cos (OF - dc) - WF sin (OF - Oc)) + 
mFR((lF - cF) cos OF - WF sin OF) , (77) 

and similarly for the torso, replacing subscript F by T, (IF - cF) by CT, and w = 0. 
Then the angular momentum vector is 

Differentiating formulates the LHS of the equations of motion (69), (70), which has one 

term in dfildt, and another in fi2. In walking the latter (centrifugal) term in negligible, 
so for our purposes 

MTO is the inertia matrix MT evaluated in the reference state for linearisation, namely 
dc = dT = 0, dF = X. 

Now to work on the torque terms in the equations of motion. The principle torque 
is due to gravity: 
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- mF g ( ( Z F  - cF)  sin ( O F  + Y )  + W F  COS ( O F  + 7 ) )  - 

-, -. 
C C  

= T'total - TgF - T'T 
= m c % c x i +  ( ~ F + ~ T ) ? c H x ~  

= mgR sin 7 + g 'mc wc cos (Oc + 7 )  + 
g (mc (cc - R) + ( m ~  + m ~ )  (1, - R) ) sin (Oc + 7 )  @ I )  

Linearising about the reference state, and for small y ,  leaves 

cF = - m ~  g ( ( 1 ~  - CF)(AOF + Y )  + W F )  ( 8 2 )  

and similarly for the torso, except that ( lF  - c F )  becomes C T ,  and w = 0. For the stance 
leg, 

c c  g ( m ~  (cc - R )  + ( m ~  +mT)(lc -R))AOc + 
(mc cc + ( m ~  + m ~ )  zc) Y + 9 mc wc 

To express the gravitational torque in matrix form, define 

Substituting these and the angular momentum terms (79)  into the equations of motion 
( 69 ) ,  (70)  produces 

B Stance dynamics with perfectly stabilised torso 

The torso angle can be held constant during the step by applying a torque at  the hip 
such that (87)  is satisfied with QT = 0. Thus solving the third (torso) equation in (87)  
for the required torque (using (78) )  gives 
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We specify that the reaction torque acts on the stance leg. Thus adding -TCT to the 
first equation in (87) modifies the inertia matrix MT and the static equilibrium vector. 
The new inertia matrix, from (78)) is 

The static equilibrium is as expressed in (45), with 

K is the upper 2 x 2 submatrix of KT, and A B ~  the upper 2 elements of The 
linearised stance equations are then as given in (4). 

C Support transfer with swaying torso 

In support transfer conservation holds for angular momenta of trailing leg and torso 
about the hip, and of the whole system about the post-transfer support point. Post- 
transfer, the angular momentum is as given by (78). Note that this involves the exact 
inertia matrix M$ evaluated for B  at the instant of support transfer (as opposed to the 
legs-vertical matrix MTO). Before transfer a similar expression applies, but the inertia 
matrix (MT) is different since the system is rotating about the trailing rather than 
leading leg. To formulate MT one follows the same derivation as for M$, using the post- 
transfer expressions for angular moment a (71), (72), but the pre- t ransfer expressions for 
velocities. Also one must be careful to index the legs properly: at support transfer swing 
and stance legs exchange roles, the angle of each rotates by T ,  and w changes sign. In 
the end, MT is as follows. Define 

Ic- = mc (rlWc + wc2 - (Ic - cc) ((cc - R) + R cos Oc) - RWC sin Oc) (92) 

IFC- = mc (R - IF) ((cC - R) cos (OC - OF) - wc sin (eC - OF)) + 
mc R ((cc - R) cos Oc - wc sin Oc + R + (R - IF) cos OF) + 
m~ (Ic - R) ((R - CF) cos (OC - OF) + WF sin (OC - OF)) + 
~ F R  ((R - CF) cosOF - WF singF + R + (Ic - R) cos Oc) + 
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Then 

mT(Ic - R)((R - I F )  cos (0,  - O F )  + R cos 0,) + 
mTR(R + ( R  - I F )  cos O F )  (93)  

IF- = m~ (T;,~,  + ( I F  - CF)(R - C F )  + W F ~ )  + 
m~ R ( ( I F  - c F )  cos OF - w F  sin O F )  

Thus conservation of angular moment a requires that 

where 8- is ordered according to the post-transfer indexing, i.e. leading leg, trailing 
leg, torso: 

6- = F A ( T ~ )  (99)  
-.+ 

Thus solving (98)  for (n produces the swaying-torso analog of (14) ,  with 

D Support transfer with perfectly stabilised torso 

Normally the torso would be jerked forward in support transfer. However, forward 
rotation could be prevented by applying a rotational impulse 'H between the torso and 
the post-transfer stance leg. Thus (98) becomes 

One solves the third (torso) equation of this set for 'H such that RT+ = (nT- = 0, and 
puts -'H into the first equation. This modifies the mass matrices just as in the equations 
of motion. One obtains a 2 x 2 system, 
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M+fi+ = M-fi- 

M+ is as given in (89), and from (98) 

E Linearisation of the step- to-step equations 

Linearisation of the S-to-S equations (38), (39) or (64), (65) becomes a lengthy process 
if one tries to write out each matrix derivative in full detail. We will not go that far 
here, but rather only indicate which matrix derivatives appear. 

Take the swaying- torso S-to-S equations (64), (65). (The fixed-torso and legs-only 
cases are similar.) Following (25), the function to be linearised - a vector of length 6 - 
is 

This is to be expanded in a Taylor series in several variables. It is essential to include 
at least 11 variables, namely a, OT, fi at  the start of steps k and k + 1, and Q. P 
must be added to the list if it varies from step to step, and several more variables might 
be added for use in "stepping stone" control, e.g. I c ,  IF at the start of steps k and 
k + 1; d:, Tc, TH during step k, and perhaps y although, as explained earlier, the S-to-S 
equations as derived are not valid for dynamic changes in slope. This list is by no means 
exclusive, but it includes the variables of present interest. The terms in f affected by 
these variables are listed below. 

(104) f =  

-, 
- F ( ~ e e [ A &  - A&,,] + Den [ f ix  + rag] + A&,) - A0k+1 ' 

AT ( ~ n s [ A &  - A&,,] + Dnn [fit + I'd]) - &+I - - 
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The partials of 1 with respect to the "essential" variables are then as follows: 

and similarly for d f / d ~ ~ , + ,  . 

and similarly for S2Fk+l ,  

and similarly for OTk.  
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and similarly for OFk, OTk. 

Also, if P varies from step to step, then one needs 

A few notes are in order concerning these formulas. First, in (105) and (107), dAs'/da 
has contributions from both Oc and OF: 

80F/da follows from the support transfer condition (9). 
In (105), dAT/da is computed from the definition of AT ( loo) ,  as follows: 

But 

So 

The impulse-coupling matrix ra also involves a term in MT-I (35), so its derivative is 
computed in the same way. 

In (log), the time derivative of the transition matrix D is computed as follows. 
Excluding control torques, the stance equations (56) can be written in standard first- 
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order form as follows: 

If Q is a diagonal matrix of eigenvalues of A ,  and B is the matrix of corresponding 
eigenvectors, then the transition matrix D is 

D(T) = @ eQT @ - I  

The derivative of D is therefore 

We apologise if these few notes seem incomplete, but we assure you that the remain- 
ing details in linearisation of { (104) are quite straightforward. The only caveat is that 
with such a large number of terms, there are many opportunities for error in algebra and 

-+ 
coding. Hence we always test linearisation code against numerical differentiation of f .  
(In that case, one might say, why not just use the numerical derivatives, and dispense 
with all the extra analysis? The answer depends on whether you are more interested in 
saving analytical time or time waiting for a computer to respond.) 

F Linearisation in terms of impulse energy 

AP can be eliminated in favour of (AE, As) by differentiating the expression for impulse 
energy (32). First rewrite it as 
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Differentiating leads to 

d E  = dpTGa [fi + rap] + PTGadfi + 

Now write P as 

sin (a + E) 
Then the differential of @ is 

d ? = d ~ p ' +  P d p '  

To get dP,  return to the energy formula (119). In terms of ( P  , p') it becomes 

Solving for d P  leaves an expression of the form 

Putting this into (121), and extending the expression for finite differences, leaves A& 
in terms of (Ek, ek), and the state variables at the start of step k. Then each term of 
the S-to-S linearisation must be modified. For example, from (107) and (110) 

Thus are the S-to-S equations converted from (43) to (44). 

G Minimum time for impulse application 
When a toe-off impulse is applied to the swing leg, an impulsive downward reaction 
is required on the stance foot to maintain contact with the ground. If walking is to 
continue, the reaction force must be kept smaller than the maximum available, i. e. the 
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weight of the machine. Therefore the impulse must be spread over some finite time 
interval. The minimum time can be estimated as follows. First note that the toe-off 
and reaction impulses must account for the total change in linear momentum on impulse 
application. Thus the reaction impulse is 

PC = mc + mF AVF + mT a f T  - P (125)  

According to (35) ,  this can be written in terms of A!? as 

-. 
P C  = (mc Gc + mF GF + m~ G ~ ) A ! ?  - P 

A!? in turn is a function of P (35) ;  hence 

PC = [(mc Gc + m~ GF + m~ G ~ ) r a  - I] @ (127)  

If the impulse is delivered in an interval ~ p ,  then the reaction force will be 

Thus the reaction force will be less than the weight provided that 

As an example, take m~ = 0.7, y = -0.025 from figure 15, for which 

Then 

The minimum-time condition (129)  then becomes 

which is 4% of the step period. While this is reasonably small, a more important measure 
of the interval is the movement of the point of application. An estimate is 



Biped walking 35 

Here we have used the post-pulse 6 in the calculation. A position shift of this size 
would call for rotation of the toe-off actuator by about 0.02rad, which is significant - 
as comparison of figures 17 and 16 will attest. Hence our caveat that in practice the 
values of E recommended by the steady-walking conditions (42) may have to be adjusted 
slightly. 
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Figure 1 A bipedal toy which walks passively down shallow inclines. 

(From [McMahon 841) 
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Figure 3 Step period and leg angle at heel strike (cr, in rad.) in passive walking. The 
machine offigure 2 was started b y  hand on a 5.5m ramp inclined at 2.5% downhill, 
and after a few steps settled into a fairly steady gait. Dots show the mean values, 
and bars the scatter recorded over 5 trials. Lengths are made dimensionless by leg 
length I ,  and times by fi. "C" denotes start-of-stance on the centre leg; '0" 
on the outer legs. 
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Figure 4 Stride angle cro and period TO in passive walking of the machine of figure 2. 5 
trials were done on each slope. Results from the first few steps of each trial were 
dropped, and the remaining data averaged. Bars show 1 standard deviation. The- 
oretical behaviour was calculated using the parameters of the test machine. These 
were measured with some uncertainty; the bands show the resulting uncertainty 
in expected performance. Reasonable consistency between model is measurement 
is realised if the rolling friction -Tc is taken to be  0.007, which in dimensional 
terms is equivalent to 25gm-force applied at the hip joint. We could not measure 
the rolling friction independently, but this magnitude seems within the realm of 
possibility. 



Figure 5 A "synthetic wheel." In its natural limit cycle it rolls like an ordinary wheel. 
On each step the free leg swings forward to syittllesize a coi~liituous rim. 
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Figure 8 Energy can be exchanged with the walking mode by applying torque to the stance 
leg, or between legs at the hip joint. Thus any selected stride (here with cro = 
0.3) can be maintained over a range of slopes. If the torque is zero, then in the 
steady walk the energy gained in descent balances the energi dissipated on support 
transfer. Notice that less energy is dissipated with a "ayload" at the hip than 
with the legs alone. A steeper descent requires a braking torque, proportional to 
the additional energy which has to be dissipated. Similarly, ascent requires some 
energy input. Stance and hip torque are eflective in diflerent regimes; this is further 
illuminated by figure 9. I 
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Figure 9 The range ofslopes negotiable by torque-powered walking i; limited at one end 
by complete vanishing of the walking cycle, and on the other b i  the cycle becoming 
unstable (indicated here by lzl > 1) .  Notice that while hip and stance torques are 
eflective on diflerent slopes, the range of acceptable step periods is the same for 
both torque strategies. 

I 
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Figure 10 Figure 9 shows that if the legs' mass distribution is fixed, 'then steady walking 
is  possible over only a limited range of slopes. However, this range can be shifted by 
changing the o fse t  between the leg axes and mass centres. This example shows that 
a small backward o fse t  of the mass centre accommodates positive stance torque with 
a reasonable step period, thus allowing stable uphill walking. Similarly a forward 
offset allows walking on steep downhill grades. 
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Figure 11 Experiments with our test machine confirmed the sensitivity of walking to 
oflset of the legs' inass centres. w was adjusted by shifting the feet relative to the 
legs. With each setting we did several trials similar to those of figure 3. cro and TO 

are well matched by calculations if Tc is taken to be -0.007, but then walks which 
were in  fact sustained for the full length of three 6-foot tables are calculated to be 
unstable. Taking Tc to be zero gives a better match to the observed stability, but 
leaves relatively large discrepancies in and TO. Thus the model is not completely 
accurate, but it is correct in predicting that small changes in w have a large effect 
on step period. 



Figure 12 A practical biped must be capable of not only steady walking over a range 
of smooth slopes, but also walking where footholds are irregularly spaced. Here 
we imagine crossing a pond via a set of randomly-spaced stepping stones. With 
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stance and hip torque as control variables, the machine can maintain a constant 
step period, while varying the step length from step to step. A similar control 
technique can be used for maintaining a steady gait over rolling terrain. 
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Figure 13 Another method of exchanging energy with the walking inode is leg length 
adjustment. If the swing leg is shortened during the step, then the machine will 
topple further prior to heel strike, and so convert the additional potential energy 
into kinetic energy at support transfer. Here cue is varied with A1 so that the same 
stride length is used on all slopes. 

I 
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Figure 14 Length adjustment, like torque application, is eflective for energy exchange 
only so long as the walking cycle exists and remains stable. As  in  figure 9 this 
is possible over only a limited range of step periods. The corresponding range of 
slopes can be adjusted by varying the oflset between the leg axes and their mass 

, centres. 
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Figure 15 Yet another method for adding energy is to push wit$ the trailing leg as it 
leaves the ground. Here the push is  taken to  be impulsive, and applied at the 
centre of curvature of the trailing foot. By appropriate choice of magnitude and 
direction of the impulse, the step period can be rnade independent of slope, and 
so stable walking can be achieved over a broad range of slopes. However, toe-08 
pulsing is eflective only for climbing; descending would call for the trailing leg to 
pull rather than push on the ground. I 

I 
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Figure 16 In practice one must be able to vary both slope and stride length. Toe-08 
pulsing allows a great deal of flexibility. These results show instability arising 
only in relatively steep climbs using a short stride. In fact this problem is more 
static than dynamic: even standing still becomes marginally stable with a small leg 
angle on a steep grade. The table gives the impulse-applicatioiz angles which make 
the step period independent of slope, and the corresponding step periods. These 
indicate that the impulse should be nearly parallel to  the trailing leg, with only a 
slight forward incline. I 
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Figure 17 Since the data in  figure 16 indicate that the toe-oflimpulse should be nearly 
parallel to the leg, it would seem practically reasonable to build the actuator exactly 
parallel to the leg. However, comparison of this plot with figure 16 reveals that only 
a few mrad in  6 makes quite a diflerence to step period and stability. Thus E must 
be adjusted with a great deal of care. 



Figure 18 Since toe-oflpulsing is eflective only for climbing, a practical machine must 
have an alternative control for descending. One alternative is stance torque, which 
in  this example is generated by reaction against a massive leaning torso. Thus a 
steep descent is maintained by leaning the torso backward, by as much as 0.4rad 
on a 10% grade. On  more moderate grades the recline is less dramatic, so that 
the torso is exactly vertical (& = -y) on some relatively shallow slope. Here we 
have specified that the torso remains vertical for uphill climbing, and an additional 
energy E is applied by a toe-ofl pulse. The pulse angle is chosen so that T,-, is 
independent of slope. Note that E and BT are in  no way comparable quantities; 
they are plotted on the same axis only because they are the apbropriate control 
variables in  the up- and downhill regimes. 
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Figure 19 Stability and step period are shown for walking over a range of up- and down- 
hill grades, with torso angle and toe-ofl impulse selected according to figure 18. 
Two other options for uphill walking are shown as well. If the torso leans back- 
ward relative to the vertical, then stability is improved. Howevel; this comes at a 
cost of higher energy consumption per step, since to maintain the backward recline 
a hip actuator must in  eflect brake the stance leg. Leaning forward is another 
possibility, but the toe-oflpulse should be selected to keep the step period in a rea- 
sonable range. This calls for varying the pulse angle with slope. J4oreover, the 
strategy works only if the slope calls for the trailing leg to push rather than pull. 
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Figure 20 Figures 18 and 19 were calculated for perfect torso stabilisation, i.e. the torso 
angle remains constant throughout the step. In practice torso stabilisation will 
not be quite perfect. In  this example the torso is taken to be stabilised by linear 
feedback, with closed-loop frequency roughly twice that of the swing mode. Thus 
at heel strike the torso is jerked forward, after wliich the coiztroller slowly brakes 
the forward motion and brings the torso back to the vertical. This puts a positive 
torque on the stance leg, which would make the step period unacceptably small were 
it not for negative oflset o f the  legs'mass centres (w = -0.02). (cf. figure 10) 



Figure 21 Perfect torso stabilisation is most desirable, but the walking mode can re- 
main intact even with quite soft control. The only caveat is that as the controller's 
timescale (l/wT) increases, the leg's mass centres must be o$set backward to main- 
tain an acceptable step period. 
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Figure 22 Provided that w is chosen appropriately, stability and step period calculated 
with a swaying torso are qualitatively similar to those calculated with perfect torso 
stabilisation (figure 19). In this example the torso controller is relatively slow. 
Variation of torso angle, toe-o$ impulse, and leg mass offset presents a very rich 
variety of options for stable walking. 


